Copper losses during the Peirce–Smith converter (PSC) operation is of great concern in the copper smelting process. Two primary objectives of the PSC are to produce blister copper with a shorter batch time and to keep the copper losses at a minimum level. Due to the nature of the process, those two objectives are contradictory to each other. Moreover, actions inside the PSC are subject to several operational constraints that make it difficult to develop a scheduling framework for its optimal operation. In this work, a basic but efficient linear multi-period scheduling framework for the PSC is presented that finds the optimal timings of the PSC operations to keep the copper losses and the batch time at a minimum level. An industrial case study is used to illustrate the effectiveness of the proposed framework. This novel solution can be implemented in other smelting processes and used for the design of an inter-PSC scheduling framework.
CITATION STYLE
Ahmed, H., Ricardez-Sandoval, L., & Vilkko, M. (2021). Optimal scheduling of the peirce–smith converter in the copper smelting process. Processes, 9(11). https://doi.org/10.3390/pr9112004
Mendeley helps you to discover research relevant for your work.