OpenStreetMap (OSM) has proven to serve as a promising free global encyclopedia of maps with an increasing popularity across different user communities and research bodies. One of the unique characteristics of OSM has been the availability of the full history of users’ contributions, which can leverage our quality control mechanisms through exploiting the history of contributions. Since this aspect of contributions (i.e., historical contributions) has been neglected in the literature, this study aims at presenting a novel approach for improving the positional accuracy and completeness of the OSM road network. To do so, we present a five-stage approach based on a Voronoi diagram that leads to improving the positional accuracy and completeness of the OSM road network. In the first stage, the OSM data history file is retrieved and in the second stage, the corresponding data elements for each object in the historical versions are identified. In the third stage, data cleaning on the historical datasets is carried out in order to identify outliers and remove them accordingly. In the fourth stage, through applying the Voronoi diagram method, one representative version for each set of historical versions is extracted. In the final stage, through examining the spatial relations for each object in the history file, the topology of the target object is enhanced. As per validation, a comparison between the latest version of the OSM data and the result of our approach against a reference dataset is carried out. Given a case study in Tehran, our findings reveal that the completeness and positional precision of OSM features can be improved up to 14%. Our conclusions draw attention to the exploitation of the historical archive of the contributions in OSM as an intrinsic quality indicator.
CITATION STYLE
Nasiri, A., Abbaspour, R. A., Chehreghan, A., & Arsanjani, J. J. (2018). Improving the quality of citizen contributed geodata through their historical contributions: The case of the road network in OpenStreetMap. ISPRS International Journal of Geo-Information, 7(7). https://doi.org/10.3390/ijgi7070253
Mendeley helps you to discover research relevant for your work.