Combining collective and artificial intelligence for global health diseases diagnosis using crowdsourced annotated medical images

7Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Visual inspection of microscopic samples is still the gold standard diagnostic methodology for many global health diseases. Soil-transmitted helminth infection affects 1.5 billion people worldwide, and is the most prevalent disease among the Neglected Tropical Diseases. It is diagnosed by manual examination of stool samples by microscopy, which is a time-consuming task and requires trained personnel and high specialization. Artificial intelligence could automate this task making the diagnosis more accessible. Still, it needs a large amount of annotated training data coming from experts.In this work, we proposed the use of crowdsourced annotated medical images to train AI models (neural networks) for the detection of soil-transmitted helminthiasis in microscopy images from stool samples leveraging non-expert knowledge collected through playing a video game. We collected annotations made by both school-age children and adults, and we showed that, although the quality of crowdsourced annotations made by school-age children are sightly inferior than the ones made by adults, AI models trained on these crowdsourced annotations perform similarly (AUC of 0.928 and 0.939 respectively), and reach similar performance to the AI model trained on expert annotations (AUC of 0.932). We also showed the impact of the training sample size and continuous training on the performance of the AI models.In conclusion, the workflow proposed in this work combined collective and artificial intelligence for detecting soil-transmitted helminthiasis. Embedded within a digital health platform can be applied to any other medical image analysis task and contribute to reduce the burden of disease.

Cite

CITATION STYLE

APA

Lin, L., Bermejo-Pelaez, D., Capellan-Martin, D., Cuadrado, D., Rodriguez, C., Garcia, L., … Luengo-Oroz, M. (2021). Combining collective and artificial intelligence for global health diseases diagnosis using crowdsourced annotated medical images. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 3344–3348). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/EMBC46164.2021.9630868

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free