Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.
CITATION STYLE
Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., … Smith, D. L. (2021, July 6). PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. Frontiers in Sustainable Food Systems. Frontiers Media SA. https://doi.org/10.3389/fsufs.2021.667546
Mendeley helps you to discover research relevant for your work.