Due to the rise of social and environmental concerns on global climate change, developing the low-carbon economy is a necessary strategic step to respond to greenhouse effect and incorporate sustainability. As such, there is a new trend for the cold chain industry to establish the low-carbon vehicle routing optimization model which takes costs and carbon emissions as the measurements of performance. This paper studies a low-carbon vehicle routing problem (LC-VRP) derived from a real cold chain logistics network with several practical constraints, which also takes customer satisfaction into account. A low-carbon two-echelon heterogeneous-fleet vehicle routing problem (LC-2EHVRP) model for cold chain third-party logistics servers (3PL) with mixed time window under a carbon trading policy is constructed in this paper and aims at minimizing costs, carbon emissions and maximizing total customer satisfaction simultaneously. To find the optimal solution of such a nondeterministic polynomial (NP) hard problem, we proposed an adaptive genetic algorithm (AGA) approach validated by a numerical benchmark test. Furthermore, a real cold chain case study is presented to demonstrate the influence of the mixed time window's changing which affect customers' final satisfaction and the carbon trading settings on LC-2EHVRP model. Experiment of LC-2EHVRP model without customer satisfaction consideration is also designed as a control group. Results show that customer satisfaction is a critical influencer for companies to plan multi-echelon vehicle routing strategy, and current modest carbon price and trading quota settings in China have only a minimal effect on emissions' control. Several managerial suggestions are given to cold chain logistics enterprises, governments, and even consumers to help improve the development of cold chain logistics.
CITATION STYLE
Wang, Z., & Wen, P. (2020). Optimization of a low-carbon two-echelon heterogeneous-fleet vehicle routing for cold chain logistics under mixed time window. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/su12051967
Mendeley helps you to discover research relevant for your work.