High-dose-rate (HDR) brachytherapy as monotherapy is a comparatively new brachytherapy procedure for prostate cancer. In addition to the intrinsic advantages of brachytherapy, including radiation dose concentration to the tumor and rapid dose fall-off at the surrounding normal tissue, HDR brachytherapy can yield a more homogeneous and conformal dose distribution through image-based decisions for source dwell positions and by optimization of individual source dwell times. Indication can be extended even to T3a/b or a part of T4 tumors because the applicators can be positioned at the extracapsular lesion, into the seminal vesicles, and/or into the bladder, without any risk of source migration or dropping out. Unlike external beam radiotherapy, with HDR brachytherapy inter-/intra-fraction organ motion is not problematic. However, HDR monotherapy requires patients to stay in bed for 1-4 days during hospitalization, even though the actual overall treatment time is short. Recent findings that the a/ß value for prostate cancer is less than that for the surrounding late-responding normal tissue has made hypofractionation attractive, and HDR monotherapy can maximize this advantage of hypofractionation. Research on HDR monotherapy is accelerating, with a growing number of publications reporting excellent preliminary clinical results due to the high b̀iologically effective dose (BED)' of 200 Gy. Moreover, the findings obtained for HDR monotherapy as an early model of extreme hypofractionation tend to be applied to other radiotherapy techniques such as stereotactic radiotherapy. All these developments point to the emerging role of HDR brachytherapy as monotherapy for prostate cancer. © The Author 2013.
CITATION STYLE
Yoshioka, Y., Yoshida, K., Yamazaki, H., Nonomura, N., & Ogawa, K. (2013). The emerging role of high-Dose-Rate (HDR) brachytherapy as monotherapy for prostate cancer. Journal of Radiation Research. Oxford University Press. https://doi.org/10.1093/jrr/rrt027
Mendeley helps you to discover research relevant for your work.