Methods to site-specifically and densely label proteins in cellular ultrastructures with small, bright, and photostable fluorophores would substantially advance super-resolution imaging. Recent advances in genetic code expansion and bioorthogonal chemistry have enabled the site-specific labeling of proteins. However, the efficient incorporation of unnatural amino acids into proteins and the specific, fluorescent labeling of the intracellular ultrastructures they form for subdiffraction imaging has not been accomplished. Two challenges have limited progress in this area: (i) the low efficiency of unnatural amino acid incorporation that limits labeling density and therefore spatial resolution and (ii) the uncharacterized specificity of intracellular labeling that will define signal-to-noise, and ultimately resolution, in imaging. Here we demonstrate the efficient production of cystoskeletal proteins (β-actin and vimentin) containing bicyclo[6.1.0]nonyne-lysine at genetically defined sites. We demonstrate their selective fluorescent labeling with respect to the proteome of living cells using tetrazine-fluorophore conjugates, creating densely labeled cytoskeletal ultrastructures. STORM imaging of these densely labeled ultrastructures reveals subdiffraction features, including nuclear actin filaments. This work enables the site-specific, live-cell, fluorescent labeling of intracellular proteins at high density for super-resolution imaging of ultrastructural features within cells.
CITATION STYLE
Uttamapinant, C., Howe, J. D., Lang, K., Beránek, V., Davis, L., Mahesh, M., … Chin, J. W. (2015). Genetic Code Expansion Enables Live-Cell and Super-Resolution Imaging of Site-Specifically Labeled Cellular Proteins. Journal of the American Chemical Society, 137(14), 4602–4605. https://doi.org/10.1021/ja512838z
Mendeley helps you to discover research relevant for your work.