Introduction: Rhodnius domesticus is a kissing bug with known occurrence around the Atlantic coast of South America and is considered to be the only endemic species of the Atlantic Forest for the Rhodniini tribe. In this study, we aimed to indicate the species trends in possible distribution in the current and paleoclimate scenarios from the last glacial maximum (LGM). Methods: We revised R. domesticus distribution information and created ecological niche models (ENMs) between the current time and Pleistocene end scenarios for the study regions. Models were built and validated using Maxent, KUENM, and ENMeval packages in R and ArcMap. We considered the models' uncertainty when calculating the average model variance and using mobility-oriented parity (MOP) analyses to indicate extrapolation risk areas in transfer scenarios. Results: We found 44 different geographical species records, and our current time models indicate suitable areas in coastal regions of the Atlantic and surrounding locations in higher and lower latitudes. Paleoclimate models indicate general suitability in coastal regions and change in suitability in the interior region through time. Discussion: Our revision and ENMs indicate two main points: Despite the fact that R. domesticus records are spatial and time concentrated in some coastal regions of the Atlantic Forest, species could have a broader distribution area, including regions outside the biome delimitations in northeast and southwest areas of South America. Paleodistribution models indicate species broader distribution in Atlantic Forest-related areas in LGM and northern interior regions of South America from late Pleistocene to the current times. In glaciation scenarios, continental shelf distribution was relevant and species' different connectivity routes with other biomes may be developed after LGM.
CITATION STYLE
Corrêa-do-Nascimento, G. S., & Leite, G. R. (2023). Current and paleoclimate models for an Atlantic Forest kissing bug indicate broader distribution outside biome delimitations. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.1051454
Mendeley helps you to discover research relevant for your work.