Isoflurane preconditioning increases survival of rat skin random-pattern flaps by induction of HIF-1α expression

31Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

Background: Survival of random-pattern skin flaps is important for the success of plastic and reconstructive surgeries. This study investigates isoflurane-induced protection against ischemia of skin flap and the underlying molecular mechanism in this process. Methods: Human umbilical vein endothelial cells (HUVECs) and human skin fibroblast cells were exposed to isoflurane for 4 h. Expression of hypoxia inducible factor-1α (HIF-1α), heme oxygenase-1 (HO-1) and vascular endothelial growth factor (VEGF) were analyzed up to 24 h post isoflurane exposure using qRT-PCR and western blot, or ELISA analyses. PI3K inhibitors-LY 294002 and wortmannin, mTOR inhibitor-rapamycin, and GSK3β inhibitor-SB 216763 were used respectively to assess the effects of isoflurane treatment and HIF-1α expression. Furthermore, 40 rats were randomly divided into 5 groups (control, isoflurane, scrambled siRNA plus isoflurane, HIF-1α siRNA plus isoflurane, and DMOG) and subjected to random-pattern skin flaps operation. Rats were prepared for evaluation of flap survival and full-feld laser perfusion imager (FLPI) (at 7 day) and microvessel density evaluation (at 10 day). Results: Isoflurane exposure induced expression of HIF-1α protein, HO-1 and VEGF mRNA and proteins in a time-dependent manner. Both LY 294002 and wortmannin inhibited phospho-Akt, phospho-mTOR, phospho-GSK 3β and HIF-1α expression after isoflurane exposure. Both wortmannin and rapamycin inhibited isoflurane-induced phospho-4E-BP1 (Ser 65) and phospho-P70 s6k (Thr 389) and HIF-1α expression. SB 216763 pre-treatment could further enhance isoflurane-induced expression of phospho-GSK 3β (Ser 9) and HIF-1α protein compared to the isoflurane-alone cells. In animal experiments, isoflurane alone, scrambled siRNA plus isoflurane, or DMOG groups had significantly upregulated vascularity and increased survival of the skin flaps compared to the controls. However, HIF-1α knockdown abrogated the protective effect of isoflurane preconditioning in rats. Conclusions: Isoflurane preconditioning improves survival of skin flaps by up the regulation of HIF-1α expression via Akt-mTOR and Akt-GSK 3β signaling pathways. © 2013 S. Karger AG, Basel.

Cite

CITATION STYLE

APA

Sun, Y., Li, Q. F., Zhang, Y., Hu, R., & Jiang, H. (2013). Isoflurane preconditioning increases survival of rat skin random-pattern flaps by induction of HIF-1α expression. Cellular Physiology and Biochemistry, 31(4–5), 579–591. https://doi.org/10.1159/000350078

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free