Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation

50Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A systematic study of Ni supported on metal–organic frameworks (MOFs) catalyst (i.e., 15Ni/UiO-66) for catalytic CO2 hydrogenation under nonthermal plasma (NTP) conditions was presented. The catalyst outperformed other catalysts based on conventional supports such as ZrO2, representing highest CO2 conversion and CH4 selectivity at about 85 and 99%, respectively. We found that the turnover frequency of the NTP catalysis system (1.8 ± 0.02 s−1) has a nearly two-fold improvement compared with the thermal catalysis (1.0 ± 0.06 s−1). After 20 hr test, XPS and HRTEM characterizations confirmed the stability of the 15Ni/UiO-66 catalyst in the NTP-activated catalysis. The activation barrier for the NTP-activated catalysis was calculated as ~32 kJ mol−1, being lower than the activation energy of the thermal catalysis (~70 kJ mol−1). In situ DRIFTS characterization confirmed the formation of multiple carbonates and formates on catalyst surface activated by NTP, surpassing the control catalysts (e.g., 15Ni/α-Al2O3 and 15Ni/ZrO2).

Cite

CITATION STYLE

APA

Chen, H., Mu, Y., Shao, Y., Chansai, S., Xiang, H., Jiao, Y., … Fan, X. (2020). Nonthermal plasma (NTP) activated metal–organic frameworks (MOFs) catalyst for catalytic CO2 hydrogenation. AIChE Journal, 66(4). https://doi.org/10.1002/aic.16853

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free