Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia

  • Bergman O
  • Ben-Shachar D
N/ACitations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca +2 , neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.

Cite

CITATION STYLE

APA

Bergman, O., & Ben-Shachar, D. (2016). Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia. The Canadian Journal of Psychiatry, 61(8), 457–469. https://doi.org/10.1177/0706743716648290

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free