Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion

39Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

The primary objective of this experiment was to assess the effect of mouthpiece chamber vacuum on teat-end congestion. The secondary objective was to assess the interactive effects of mouthpiece chamber vacuum with teat-end vacuum and pulsation setting on teat-end congestion. The influence of system vacuum, pulsation settings, mouthpiece chamber vacuum, and teat-end vacuum on teat-end congestion were tested in a 2 × 2 factorial design. The low-risk conditions for teat-end congestion (TEL) were 40 kPa system vacuum (Vs) and 400-ms pulsation b-phase. The high-risk conditions for teat-end congestion (TEH) were 49 kPa Vs and 700-ms b-phase. The low-risk condition for teat-barrel congestion (TBL) was created by venting the liner mouthpiece chamber to atmosphere. In the high-risk condition for teat-barrel congestion (TBH) the mouthpiece chamber was connected to short milk tube vacuum. Eight cows (32 quarters) were used in the experiment conducted during 0400 h milkings. All cows received all treatments over the entire experimental period. Teatcups were removed after 150 s for all treatments to standardize the exposure period. Calculated teat canal cross-sectional area (CA) was used to assess congestion of teat tissue. The main effect of the teat-end treatment was a reduction in CA of 9.9% between TEL and TEH conditions, for both levels of teat-barrel congestion risk. The main effect of the teat-barrel treatment was remarkably similar, with a decrease of 9.7% in CA between TBL and TBH conditions for both levels of teat-end congestion risk. No interaction between treatments was detected, hence the main effects are additive. The most aggressive of the 4 treatment combinations (TEH plus TBH) had a CA estimate 20% smaller than for the most gentle treatment combination (TEL plus TBL). The conditions designed to impair circulation in the teat barrel also had a deleterious effect on circulation at the teat end. This experiment highlights the importance of elevated mouthpiece chamber vacuum on teat-end congestion and resultant decreases in CA.

Cite

CITATION STYLE

APA

Penry, J. F., Upton, J., Mein, G. A., Rasmussen, M. D., Ohnstad, I., Thompson, P. D., & Reinemann, D. J. (2017). Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion. Journal of Dairy Science, 100(1), 821–827. https://doi.org/10.3168/jds.2016-11533

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free