Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine

37Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Spherical, submicronic TiO2 powder particles were prepared in the low temperature process of ultrasonic spray pyrolysis (150 C) by using as a precursor aqueous colloidal solutions consisting of surface modified 45 Å TiO2 nanoparticles with dopamine. Detailed structural and morphological characterization of colored submicronic TiO2 spheres was performed by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analysis and FTIR techniques. Also, optical characterization of both dopamine-modified TiO2 precursor nanoparticles and submicronic TiO2 powder particles was performed using absorption and diffuse reflectance spectroscopy, respectively. A significant decrease of the effective band gap (1.9 eV) in dopamine-modified TiO2 nanoparticles compared to the band gap of bulk material (3.2 eV) was preserved after formation of submicronic TiO2 powder particles in the process of ultrasonic spray pyrolysis under mild experimental conditions. Due to the nanostructured nature, surface-modified assemblage of TiO2 nanoparticles preserved unique ability to absorb light through charge transfer complex by photoexcitation of the ligand-to-TiO2 band, conventionally associated with extremely small TiO2 nanoparticles (d < 20 nm) whose surface Ti atoms, owing to the large curvature, have penta-coordinate geometry. © 2013 Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Dugandžić, I. M., Jovanović, D. J., Mančić, L. T., Milošević, O. B., Ahrenkiel, S. P., Šaponjić, Z. V., & Nedeljković, J. M. (2013). Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine. Materials Chemistry and Physics, 143(1), 233–239. https://doi.org/10.1016/j.matchemphys.2013.08.058

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free