The influence of the process parameters on the vertical force generated during friction stir welding of AA6082-T6 aluminium alloy sheet blanks was studied by performing experiments with constant values of the rotational speed, varying between 1200 and 2500 rpm, and welding speed, ranging between 30 and 100 mm/min. The effect of the tool dwelling was also analysed. The force vs. processing time curve has shown a very complex behaviour during the lowering motion of the pin tool related to the occurrence of both primary and secondary plunging. The tool dwelling produces a quick decrease in the vertical force with growing processing time until reaching a constant value. It was also seen that the tool dwelling does not influence the vertical force in the subsequent stage. As the tool began its welding motion, the vertical force immediately gets to a constant value until tool pulling out takes place. Furthermore, it was shown that the growth in the welding speed and the decrease in the rotational speed lead to an increase in the vertical force. The mechanical properties of the joints were evaluated versus the process parameters and the relationships among the ultimate tensile strength and ultimate elongation and the vertical force were defined. Finally, the microstructure developed during the friction stir welding was investigated and related to the mechanical properties of the joints.
CITATION STYLE
Forcellese, A., Simoncini, M., & Casalino, G. (2017). Influence of process parameters on the vertical forces generated during friction stir welding of AA6082-T6 and on the mechanical properties of the joints. Metals, 7(9). https://doi.org/10.3390/met7090350
Mendeley helps you to discover research relevant for your work.