Geometrically nonlinear analysis of functionally graded timoshenko curved beams with variable curvatures

14Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, geometrically nonlinear analysis of functionally graded curved beams with variable curvatures based on Timoshenko beam theory is presented. Considering the axial extension and the transversal shear deformation, geometrically nonlinear governing equations for the FGM curved beams with variable curvatures subjected to thermal and mechanical loads are formulated. Material properties of the curved beams are assumed to vary arbitrarily in the thickness direction and be independent on the temperature change. By using the numerical shooting method to solve the coupled ordinary differential equations, the nonlinear response of static thermal bending of a FGM semielliptic beams subjected to transversely nonuniform temperature rise is obtained numerically. The effects of material gradient, shear deformation, and temperature rise on the response of the curved beam are discussed in detail. Nonlinear bending of a closed FGM elliptic structure subjected to two pinching concentrated loads is also analyzed. This paper presents some equilibrium paths and configurations of the elliptic curved beam for different pinching concentrated loads.

Cite

CITATION STYLE

APA

Wan, Z. Q., Li, S. R., & Ma, H. W. (2019). Geometrically nonlinear analysis of functionally graded timoshenko curved beams with variable curvatures. Advances in Materials Science and Engineering, 2019. https://doi.org/10.1155/2019/6204145

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free