Eulerian Cycles

  • Neumann F
  • Witt C
Citations of this article
Mendeley users who have this article in their library.
Get full text


An Eulerian cycle, also called an Eulerian circuit, Euler circuit, Eulerian tour, or Euler tour, is a trail which starts and ends at the same graph vertex. In other words, it is a graph cycle which uses each graph edge exactly once. For technical reasons, Eulerian cycles are mathematically easier to study than are Hamiltonian cycles. An Eulerian cycle for the octahedral graph is illustrated above. As a generalization of the Königsberg bridge problem, Euler showed (without proof) that a...




Neumann, F., & Witt, C. (2010). Eulerian Cycles (pp. 133–146).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free