Abstract
We present a dynamical simulation scheme to model the highly correlated excited state dynamics of linear polyenes. We apply it to investigate the internal conversion processes of carotenoids following their photoexcitation. We use the extended Hubbard-Peierls model, Formula Presented, to describe the π-electronic system coupled to nuclear degrees of freedom. This is supplemented by a Hamiltonian, Formula Presented, that explicitly breaks both the particle-hole and two-fold rotation symmetries of idealized carotenoid structures. The electronic degrees of freedom are treated quantum mechanically by solving the time-dependent Schrödinger equation using the adaptive time-dependent DMRG (tDMRG) method, while nuclear dynamics are treated via the Ehrenfest equations of motion. By defining adiabatic excited states as the eigenstates of the full Hamiltonian, Formula Presented, and diabatic excited states as eigenstates of Formula Presented, we present a computational framework to monitor the internal conversion process from the initial photoexcited 11Bu+ state to the singlet triplet-pair states of carotenoids. We further incorporate Lanczos-DMRG to the tDMRG-Ehrenfest method to calculate transient absorption spectra from the evolving photoexcited state. We describe in detail the accuracy and convergence criteria for DMRG, and show that this method accurately describes the dynamical processes of carotenoid excited states. We also discuss the effect of the symmetry-breaking term, Formula Presented, on the internal conversion process, and show that its effect on the extent of internal conversion can be described by a Landau-Zener-type transition. This methodological paper is a companion to our more explanatory discussion of carotenoid excited state dynamics in Manawadu, D.; Georges, T. N.; Barford, W. Photoexcited State Dynamics and Singlet Fission in Carotenoids. J. Phys. Chem. A 2023, 127, 1342.
Cite
CITATION STYLE
Manawadu, D., Valentine, D. J., & Barford, W. (2023). Dynamical Simulations of Carotenoid Photoexcited States Using Density Matrix Renormalization Group Techniques. Journal of Physical Chemistry A, 127(16), 3714–3727. https://doi.org/10.1021/acs.jpca.3c00988
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.