Gene targeting is useful to isolate strains with mutations in a gene of interest for efficient breeding. In this study, we generated msh4 or mer3 single-gene disruptant monokaryons using a Pleurotus ostreatus Δku80 strain for efficient gene targeting. Dikaryons of P. ostreatus Δmsh4×Δmsh4 or Δmer3×Δmer3 were isolated via backcrosses, and the number of basidiospores produced was measured. The number of basidiospores fell by an average 1/13.7 in the P. ostreatus Δmsh4×Δmsh4 dikaryons versus the P. ostreatus msh4+×Δmsh4 dikaryons, and 1/82.6 in the P. ostreatus Δmer3×Δmer3 dikaryons versus the P. ostreatus mer3+×Δmer3 dikaryons. To demonstrate the effects of ku80 disruption, P. ostreatus Δku80×Δku80 dikaryon strains were isolated and no significant effects on basidiospore production were observed. Fluorescence microscopy showed meiotic progression was arrested during prophase I in the msh4 or mer3 disruptants. To our knowledge, this is the first report on molecular breeding of sporeless strains in cultivated mushrooms using an efficient method for targeted gene disruption.
CITATION STYLE
Yamasaki, F., Nakazawa, T., Sakamoto, M., & Honda, Y. (2021). Molecular breeding of sporeless strains of Pleurotus ostreatus using a non-homologous DNA end-joining defective strain. Mycological Progress, 20(1), 73–81. https://doi.org/10.1007/s11557-020-01661-w
Mendeley helps you to discover research relevant for your work.