Prediction of age and sex from paranasal sinus images using a deep learning network

9Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

This study was conducted to develop a convolutional neural network (CNN)-based model to predict the sex and age of patients by identifying unique unknown features from paranasal sinus (PNS) X-ray images.We employed a retrospective study design and used anonymized patient imaging data. Two CNN models, adopting ResNet-152 and DenseNet-169 architectures, were trained to predict sex and age groups (20-39, 40-59, 60+ years). The area under the curve (AUC), algorithm accuracy, sensitivity, and specificity were assessed. Class-activation map (CAM) was used to detect deterministic areas. A total of 4160 PNS X-ray images were collected from 4160 patients. The PNS X-ray images of patients aged ≥20 years were retrieved from the picture archiving and communication database system of our institution. The classification performances in predicting the sex (male vs female) and 3 age groups (20-39, 40-59, 60+ years) for each established CNN model were evaluated.For sex prediction, ResNet-152 performed slightly better (accuracy = 98.0%, sensitivity = 96.9%, specificity = 98.7%, and AUC = 0.939) than DenseNet-169. CAM indicated that maxillary sinuses (males) and ethmoid sinuses (females) were major factors in identifying sex. Meanwhile, for age prediction, the DenseNet-169 model was slightly more accurate in predicting age groups (77.6 ± 1.5% vs 76.3 ± 1.1%). CAM suggested that the maxillary sinus and the periodontal area were primary factors in identifying age groups.Our deep learning model could predict sex and age based on PNS X-ray images. Therefore, it can assist in reducing the risk of patient misidentification in clinics.

Cite

CITATION STYLE

APA

Kim, D. K., Cho, B. J., Lee, M. J., & Kim, J. H. (2021). Prediction of age and sex from paranasal sinus images using a deep learning network. Medicine (United States), 100(7), E24756. https://doi.org/10.1097/MD.0000000000024756

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free