This study examines the potential of combining decision support approaches to identify optimal bundles of ecosystem services in a framework characterized by multiple decision-makers. A forested landscape, Zona de Intervenção Florestal of Paiva and Entre-Douro and Sousa (ZIF_VS) in Portugal, is used to test and demonstrate this potential. The landscape extends over 14,388 ha, representing 1976 stands. The property is fragmented into 376 holdings. The overall analysis was performed in three steps. First, we selected six alternative solutions (A to F) in a Pareto frontier generated by a multiple-criteria method within a web-based decision support system (SADfLOR) for subsequent analysis. Next, an aspatial strategic multicriteria decision analysis (MCDA) was performed with the Criterium DecisionPlus (CDP) component of the Ecosystem Management Decision Support (EMDS) system to assess the aggregate performance of solutions A to F for the entire forested landscape with respect to their utility for delivery of ecosystem services. For the CDP analysis, SADfLOR data inputs were grouped into two sets of primary criteria: Wood Harvested and Other Ecosystem Services. Finally, a spatial logic-based assessment of solutions A to F for individual stands of the study area was performed with the NetWeaver component of EMDS. The NetWeaver model was structurally and computationally equivalent to the CDP model, but the key NetWeaver metric is a measure of the strength of evidence that solutions for specific stands were optimal for the unit. We conclude with a discussion of how the combination of decision support approaches encapsulated in the two systems could be further automated in order to rank several efficient solutions in a Pareto frontier and generate a consensual solution.
CITATION STYLE
Marto, M., Reynolds, K. M., Borges, J. G., Bushenkov, V. A., & Marques, S. (2018). Combining decision support approaches for optimizing the selection of bundles of ecosystem services. Forests, 9(7). https://doi.org/10.3390/f9070438
Mendeley helps you to discover research relevant for your work.