The intriguing process of free energy conversion, ubiquitous in all living organisms, is manifested in ATP binding and hydrolysis. ATPase activity has long been recognized to be a capability limited to proteins. However, the presence of an astonishing variety of unknown RNA species in cells and the finding that RNA has catalytic activity have bred the notion that RNA might not be excluded from the group of ATPases. All DNA-packaging motors of double-stranded DNA phages involve two nonstructural components with certain characteristics typical of ATPases. In bacterial virus phi29, one of these two components is an RNA (pRNA). Here we report that this pRNA is able to bind ATP. A comparison between the chemically selected ATP-binding RNA aptamer and the central region of pRNA reveals similarity in sequence and structure. The replacement of the central region of pRNA with the sequence from ATP-binding RNA aptamer produced chimeric aptRNA that is able to both bind ATP and assemble infectious viruses in the presence of ATP. RNA mutation studies revealed that changing only one base essential for ATP binding caused both ATP binding and viral assembly to cease, suggesting that the ATP binding motif is the vital part of the pRNA that forms a hexamer to drive the phi29 DNA-packaging motor. This is the first demonstration of a natural RNA molecule that binds ATP and the first case to report the presence of a SELEX-derived RNA aptamer in living organisms.
CITATION STYLE
Shu, D., & Guo, P. (2003). A viral RNA that binds ATP and contains a motif similar to an ATP-binding aptamer from SELEX. Journal of Biological Chemistry, 278(9), 7119–7125. https://doi.org/10.1074/jbc.M209895200
Mendeley helps you to discover research relevant for your work.