Developing high-efficiency and cost-effective alloy catalysts toward hydrogen-evolution reaction (HER) is crucial for large-scale hydrogen production via electrochemical water splitting, but conventional single-principal-element alloy design usually causes insufficient activity and durability of state-of-the-art multimetallic catalysts based on non-precious transition metals. Herein, we report multicomponent intermetallic Mo(NiFeCo)4 nanoparticles seamlessly integrated on hierarchical nickel network (Mo(NiFeCo)4/Ni) as robust hydrogen-evolution electrocatalysts with remarkably improved activity and durability by making use of iron and cobalt atoms partially substituting nickel sites to form high-entropy NiFeCo sublattice in intermetallic MoNi4 matrix, which serve as bifunctional electroactive sites for both water dissociation and adsorption/combination of hydrogen intermediate and improves thermodynamic stability. By virtue of bicontinuous nanoporous nickel skeleton facilitating electron/ion transportation, self-supported nanoporous Mo(NiFeCo)4/Ni electrode exhibits exceptional HER electrocatalysis, with low Tafel slope (≈35 mV dec−1), high current density (≈2300 mA cm−2) at low overpotential (200 mV) and long-term durability in 1 m KOH. When coupled to its electrooxidized and nitrified derivative for oxygen-evolution reaction, their alkaline water electrolyzers operate with a superior overall water-splitting output, outperforming the one constructed with commercially available noble-metal-based catalysts. These electrochemical properties make it an attractive candidate as electrocatalyst in alkaline water electrolysis for large-scale hydrogen generation.
CITATION STYLE
Shi, H., Sun, X. Y., Liu, Y., Zeng, S. P., Zhang, Q. H., Gu, L., … Jiang, Q. (2023). Multicomponent Intermetallic Nanoparticles on Hierarchical Metal Network as Versatile Electrocatalysts for Highly Efficient Water Splitting. Advanced Functional Materials, 33(19). https://doi.org/10.1002/adfm.202214412
Mendeley helps you to discover research relevant for your work.