Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond

73Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3-kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hub for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled-coil domain (CCD); and a β-α-repeated autophagy-specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post-translational modifications. A better structure-based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post-translational modifications will be essential to elucidating the mechanism of its multiple biological roles.

Cite

CITATION STYLE

APA

Mei, Y., Glover, K., Su, M., & Sinha, S. C. (2016, October 1). Conformational flexibility of BECN1: Essential to its key role in autophagy and beyond. Protein Science. Blackwell Publishing Ltd. https://doi.org/10.1002/pro.2984

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free