Pemetrexed disodium (PMX) stands out in the treatment of non-small cell lung cancer (NSCLC), but with short half-life and toxic side effects. This study was to design cationic liposomes for targeting delivery PMX to the lungs. The PMX cationic liposome was prepared by thin-film hydration using stearylamine (SA) as the positive component of charge-regulating charge. Then, the PMX cationic liposome (SA-PMX-Lips) was characterized by particle size, morphology, entrapment efficiency (EE), and drug loading (DL). Finally, the drug release behavior in vitro, the pharmacokinetic study, and tissue distribution of SA-PMX-Lips were evaluated separately, with PMX solution (PMX-Sol) and PMX liposome (PMX-Lips) as the control. According to results, SA-PMX-Lips were spherical and the particle size was 219.7 ± 4.97 nm with a narrow polydispersity index (PDI) (0.231 ± 0.024) and a positive zeta potential 22.2 ± 0.52 mV. Its EE was 92.39 ± 1.94% and DL was 9.15 ± 0.07%. The results of in vitro and in vivo experiments showed that SA-PMX-Lips released slowly, prolonged retention time and increased the value of AUC. More notably, SA-PMX-Lips could improve the accumulation of drugs in the lungs and the relative uptake rate (Re) was 2.35 in the lungs, which indicated its lung targeting. In summary, SA-PMX-Lips showed the potential for the effective delivery of PMX and the treatment of NSCLC.
CITATION STYLE
He, K., Liu, J., Gao, Y., Hao, Y., Yang, X., & Huang, G. (2020). Preparation and Evaluation of Stearylamine-Bearing Pemetrexed Disodium-Loaded Cationic Liposomes In Vitro and In Vivo. AAPS PharmSciTech, 21(5). https://doi.org/10.1208/s12249-019-1586-6
Mendeley helps you to discover research relevant for your work.