Importance of wheel in the automobile is obvious. The vehicle may be towed without the engine but at the same time even that is also not possible without the wheels, the wheels along the tire has to carry the vehicle load, provide cushioning effect and cope with the steering control. Generally wheel spokes are the supports consisting of a radial member of a wheel joining the hub to the rim. The most commonly used materials for making Wheel spokes are with features of excellent lightness, thermal conductivity, corrosion resistance, characteristics of casting, low temperature, high damping property, machine processing and recycling, etc. This metal main advantage is reduced weight, high accuracy and design choices of the wheel. This metal is useful for energy conservation because it is possible to recycle. Spokes make vehicles look great but at the same time they require attention in maintenance. To perform their functions best, the spokes must be kept under the right amount of tension. The two main types of motorcycle rims are solid wheels, in which case the rim and spokes are all cast as one unit and the other spoke wheels, where the motorcycle rims are laced with spokes. These types of wheels require unusually high spoke tension, since the load is carried by fewer spokes. If a spoke does break, the wheel generally becomes instantly unridable also the hub may break. Presently, for motorcycles Aluminium alloy wheels are used, currently now replacing by new magnesium alloy due its better properties than Al-alloy. An important implication of this paper or the problem stated here is to "analyse the stress and the displacement distribution comparing the results obtained". In addition, this work extends Proper analysis of the wheel plays an important role for the safety of the rider. This paper deals with the static &fatigue analysis of the wheel. The present work attempts to analyse the safe load of the alloy wheel, which will indicate the safe drive is possible. A typical alloy wheel configuration of Suzuki GS150R commercial vehicle is chosen for study. Finite element analysis has been carried out to determine the safe stresses and pay loads.
CITATION STYLE
Theja, S. (2013). Structural and Fatigue Analysis of Two Wheeler Lighter Weight Alloy Wheel. IOSR Journal of Mechanical and Civil Engineering, 8(2), 35–45. https://doi.org/10.9790/1684-0823545
Mendeley helps you to discover research relevant for your work.