New Findings: What is the central question of this study? Loss of taste or inability to distinguish between different tastes progresses with age. The purpose was to evaluate the age-dependent changes in taste by studying the electrophysiological properties of taste receptor cells. What is the main finding and its importance? Ageing decreased the voltage-gated Na+ and K+ current densities of type III cells (sour and/or salt receptor cells) but did not affect the current densities in type II cells. At the peripheral levels, the excitability of type III cells was reduced due to ageing, which may affect the signal transduction to taste nerves. Abstract: The loss of taste due to normal ageing in mammals is assumed to be caused by the ageing of taste receptor cells. We examined the electrophysiological properties of taste receptor cells in the fungiform taste buds of ∼20-month-old mice in situ and subsequently identified their cell types with immunological markers: the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R3) for type II cells and a SNARE protein, synaptosomal-associated protein 25 (SNAP-25), for type III cells. Other cells are referred to as non-immunoreactive cells (non-IRCs). Cell types of some cells that could not be identified using cell-type markers were identified based on the electrophysiological feature of the respective cell types. All cell types generated action potentials and a variety of voltage-gated currents. The type II cells mainly expressed tetraethylammonium (TEA)-insensitive and slowly activating outwardly rectifying currents and generated tail currents in repolarization. In contrast, the type III cells expressed TEA-sensitive and faster activating K+ currents and did not generate tail currents. These cell type-specific characteristics of voltage-gated currents in ∼20-month-old mice were similar to their respective cell types in ∼2-month-old mice. Also, we showed an age-dependent decrease in Na+ and K+ current densities in type III cells and an age-dependent increase in outwardly rectifying current density in non-IRCs. Ageing did not affect the voltage-gated current densities in type II cells. The decreased Na+ and K+ current densities, i.e. the decreased excitability of type III cells, due to ageing may affect the signal transduction to taste nerves.
CITATION STYLE
Takeuchi, K., Yoshii, K., & Ohtubo, Y. (2021). Age-related electrophysiological changes in mouse taste receptor cells. Experimental Physiology, 106(2), 519–531. https://doi.org/10.1113/EP089104
Mendeley helps you to discover research relevant for your work.