Neurobiology of secure infant attachment and attachment despite adversity: A mouse model

28Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used 14C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

Cite

CITATION STYLE

APA

Roth, T. L., Raineki, C., Salstein, L., Perry, R., Sullivan-Wilson, T. A., Sloan, A., … Sullivan, R. M. (2013). Neurobiology of secure infant attachment and attachment despite adversity: A mouse model. Genes, Brain and Behavior, 12(7), 673–680. https://doi.org/10.1111/gbb.12067

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free