Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments

10Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The application of high temperature ceramic coatings has enabled aircraft and power generation turbines to run at higher inlet temperatures for greater efficiency. Their use extends the lifetime of the superalloy blades that bear thermal gradients and mechanical loads during operation. In this work, ex-situ photo-luminescence spectroscopy was conducted to investigate the stresses within the thermally grown oxide of a thermal barrier coated tubular sample following complex realistic conditions, such as induced thermal gradients, and long duration aging. The resulting high spatial resolution stress contour maps highlight the development of the thermally grown oxide in response to the complex conditions. The outcomes highlight both the role of the aging process and the oxide growth's influence on the stress profile which varies spatially across the specimen. The results further provide early detection of micro-damaged zones in the oxide layer nondestructively. Improving the understanding of the coating system's response to loading conditions will allow for more accurate system modeling and early detection and monitoring of damage zones, which is critical for improving efficiency and longevity of aircraft and power generation turbines.

Cite

CITATION STYLE

APA

Manero, A., Selimov, A., Fouliard, Q., Knipe, K., Wischek, J., Meid, C., … Raghavan, S. (2017). Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments. Surface and Coatings Technology, 323, 30–38. https://doi.org/10.1016/j.surfcoat.2016.09.057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free