We quantitatively and qualitatively evaluated the bacterial contamination of mobile phones (MPs) in relation to users’ demographics, habits, and device characteristics by administering questionnaires to 83 healthcare university students and sampling their MPs by following a cross-sectional design. The heterotrophic plate count (HPC) at 22 °C (HPC 22 °C) and 37 °C (HPC 37 °C), Enterococci, Gram-negative bacteria, and Staphylococci were evaluated. Higher bacterial loads were detected for HPC 37 °C and Staphylococci (416 and 442 CFU/dm2, respectively), followed by HPC 22 °C, Enterococci, and Gram-negative bacteria; the vast majority of samples were positive for HPC 37 °C, HPC 22 °C, and Staphylococci (98%), while Enterococci (66%) and Gram-negative bacteria (17%) were detected less frequently. A statistically significant positive correlation (r = 0.262, p < 0.02) was found between the European head specific absorption rate (SAR) and both HPC 37 °C and Staphylococci; Enterococci showed a strong, significant correlation with HPC 37 °C, HPC 22 °C, and Gram-negative bacteria (r = 0.633, 0.684, 0.884) and a moderate significant correlation with Staphylococci (r = 0.390). Significant differences were found between HPC 22 °C and the type of internship attendance, with higher loads for Medicine. Students with a daily internship attendance had higher HPC 22 °C levels than those attending <6 days/week. Our study showed that bacteria can survive on surfaces for long periods, depending on the user’s habits and the device’s characteristics.
CITATION STYLE
Maurici, M., Pica, F., D’Alò, G. L., Cicciarella Modica, D., Distefano, A., Gorjao, M., … De Filippis, P. (2023). Bacterial Contamination of Healthcare Students’ Mobile Phones: Impact of Specific Absorption Rate (SAR), Users’ Demographics and Device Characteristics on Bacterial Load. Life, 13(6). https://doi.org/10.3390/life13061349
Mendeley helps you to discover research relevant for your work.