Chestnut tannin extract modulates growth performance and fatty acid composition in finishing Tan lambs by regulating blood antioxidant capacity, rumen fermentation, and biohydrogenation

2Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Tannins as plant extracts have emerged as promising and potential alternatives for antibiotics in modern livestock cultivation systems. This study investigates the effect of dietary chestnut tannin extract (CTE) in finishing Tan lambs. Twenty-seven male Tan lambs were randomly divided into three groups: (1) control group (CON; basal diet); (2) low-dose CTE group (LCTE; basal diet + 2 g/kg CTE, dry matter [DM] basis); (3) high-dose CTE group (HCTE; basal diet + 4 g/kg CTE, DM basis). The HCTE group exhibited markedly higher average daily gain (ADG) and DM intake than CON (P < 0.01). The ruminal total volatile fatty acid concentration increased linearly with increasing CTE supplementation (P < 0.01), while the opposite trend was observed for butyrate molar proportion (P < 0.01). Upon increasing CTE dosage, plasma glucose, high-density lipoprotein cholesterol, glutathione peroxidase, and superoxide dismutase content increased linearly (P < 0.05), whereas low-density lipoprotein cholesterol and urea nitrogen decreased linearly or quadratically (P < 0.05), respectively. A linear increase was also observed in ruminal t6 C18:1 and t9, c12 C18:2 proportions (P < 0.01), and plasma C18:2n-6 and n-6 polyunsaturated fatty acids proportions with increased CTE supplementation (P < 0.01). In the longissimus dorsi muscle, the atherogenic index decreased linearly (P < 0.05), while c11 C18:1 and C20:5n-3 increased linearly (P < 0.05). Moreover, c9, t11 conjugated linoleic acids proportion increased in subcutaneous fat with CTE supplementation (P < 0.01). In conclusion, Dietary CTE enhances the ADG of finishing Tan lambs in a dose-dependent manner, modulates plasma metabolites and antioxidant capacity, and improves rumen fermentation and body fatty acid composition. These results provide a reference for the rational application of CTE in ruminant production.

Cite

CITATION STYLE

APA

Gao, C., Qi, M., & Zhou, Y. (2024). Chestnut tannin extract modulates growth performance and fatty acid composition in finishing Tan lambs by regulating blood antioxidant capacity, rumen fermentation, and biohydrogenation. BMC Veterinary Research, 20(1). https://doi.org/10.1186/s12917-023-03870-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free