Stimulation with a monoclonal antibody (mAb4E4) of scavenger receptor-mediated uptake of chemically modified low density lipoproteins by THP-1-derived macrophages enhances foam cell generation

28Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

mAb4E4, a murine monoclonal antibody that is specific for acetylated LDL and malondialdehyde-treated LDL, binds specifically to modified LDL present in human atherosclerotic lesions. It is directed against an epitope that is poorly exposed in delipidated and solubilized apolipoprotein B-100 from modified LDL. mAb4E4, as well as its F(ab′)2 and Fab fragments, enhanced the uptake of both acetylated LDL and malondialdehyde-treated LDL by THP-1-derived macrophages resulting in a sixfold increase of cytoplasmic cholesteryl ester levels. The increased uptake of modified LDL/mAb4E4 complexes did not occur via the Fc receptor and did not depend on aggregation of modified LDL particles. However, their uptake was inhibited by blocking the scavenger receptors with fucoidin or by downregulation of receptor expression with endotoxins or interferon-γ, indicating that their uptake is mediated via these receptors. Thus, generation of autoimmune antibodies against modified LDL and subsequent endocytosis of soluble modified LDL/antibody complexes via scavenger receptors may enhance foam cell generation. This mechanism may contribute to the progression of atherosclerotic lesions.

Cite

CITATION STYLE

APA

Holvoet, P., Perez, G., Bernar, H., Brouwers, E., Vanloo, B., Rosseneu, M., & Collen, D. (1994). Stimulation with a monoclonal antibody (mAb4E4) of scavenger receptor-mediated uptake of chemically modified low density lipoproteins by THP-1-derived macrophages enhances foam cell generation. Journal of Clinical Investigation, 93(1), 89–98. https://doi.org/10.1172/JCI116988

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free