La Pacana (central Andes, Northern Chile) is one of the largest resurgent calderas in the world, formed 4 Ma ago during an eruption with a VEI of 8.7. We undertake a gravimetric study to contribute new insights into the inner structure and evolution of this caldera. The La Pacana Bouguer residual anomaly is asymmetric and has an average amplitude of-12 to-14 mGal, which we interpret as being produced by the low-density intracaldera ignimbrite infill. A reinterpretation of the caldera stratigraphy plus the available geochronology suggests that the current shape of La Pacana was produced by the collapse of two nested calderas, roughly limited by the axis where the resurgent dome changes its orientation, with the oldest eruption in the southern part of La Pacana. The gravity data suggests that these southern and northern nested structures would have collapsed with downsag and trap-door geometries respectively, evidence of asymmetric subsidence. Intra caldera ignimbrite thicknesses were calculated with 2.5D forward models and show that the ignimbrite infill in its southern and northern parts reach ∼0.6-1.1 km and ∼2.5-3 km respectively. Using Gauss’s theorem, we calculate the volume of the intra caldera ignimbrite infill is ∼3,400-3,500 km3, in agreement with previous estimates and with models that show that the larger the caldera diameter, the larger the erupted volume.
CITATION STYLE
Delgado, F., & Pavez, A. (2015). Nuevos antecedentes sobre la estructura interna de la caldera La Pacana mediante un estudio gravimétrico (Andes centrales, Chile). Andean Geology, 42(3). https://doi.org/10.5027/andgeov42n3-a02
Mendeley helps you to discover research relevant for your work.