BAK1 and BKK1 Regulate Brassinosteroid-Dependent Growth and Brassinosteroid-Independent Cell-Death Pathways

247Citations
Citations of this article
172Readers
Mendeley users who have this article in their library.

Abstract

Brassinosteroids (BRs) are phytosteroid hormones controlling various physiological processes critical for normal growth and development. BRs are perceived by a protein complex containing two transmembrane receptor kinases, BRASSINOSTEROID INSENSITIVE 1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) [1-3]. BRI1 null mutants exhibit a dwarfed stature with epinastic leaves, delayed senescence, reduced male fertility, and altered light responses. BAK1 null mutants, however, only show a subtle phenotype, suggesting that functionally redundant proteins might be present in the Arabidopsis genome. Here we report that BAK1-LIKE 1 (BKK1) functions redundantly with BAK1 in regulating BR signaling. Surprisingly, rather than the expected bri1-like phenotype, bak1 bkk1 double mutants exhibit a seedling-lethality phenotype due to constitutive defense-gene expression, callose deposition, reactive oxygen species (ROS) accumulation, and spontaneous cell death even under sterile growing conditions. Our detailed analyses demonstrate that BAK1 and BKK1 have dual physiological roles: positively regulating a BR-dependent plant growth pathway, and negatively regulating a BR-independent cell-death pathway. Both BR signaling and developmentally controlled cell death are critical to optimal plant growth and development, but the mechanisms regulating early events in these pathways are poorly understood. This study provides novel insights into the initiation and crosstalk of the two signaling cascades. © 2007 Elsevier Ltd. All rights reserved.

Author supplied keywords

Cite

CITATION STYLE

APA

He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., … Li, J. (2007). BAK1 and BKK1 Regulate Brassinosteroid-Dependent Growth and Brassinosteroid-Independent Cell-Death Pathways. Current Biology, 17(13), 1109–1115. https://doi.org/10.1016/j.cub.2007.05.036

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free