Bayesian spatial models with a mixture neighborhood structure

Citations of this article
Mendeley users who have this article in their library.


In Bayesian disease mapping, one needs to specify a neighborhood structure to make inference about the underlying geographical relative risks. We propose a model in which the neighborhood structure is part of the parameter space. We retain the Markov property of the typical Bayesian spatial models: given the neighborhood graph, disease rates follow a conditional autoregressive model. However, the neighborhood graph itself is a parameter that also needs to be estimated. We investigate the theoretical properties of our model. In particular, we investigate carefully the prior and posterior covariance matrix induced by this random neighborhood structure, providing interpretation for each element of these matrices. © 2012 Elsevier Inc.




Rodrigues, E. C., & Assunção, R. (2012). Bayesian spatial models with a mixture neighborhood structure. Journal of Multivariate Analysis, 109, 88–102.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free