In atherosclerosis, macrophages in the arterial wall ingest plasma lipoprotein-derived lipids and become lipid-filled foam cells with a limited lifespan. Thus, efficient removal of apoptotic foam cells by efferocytic macrophages is vital to preventing the dying foam cells from forming a large necrotic lipid core, which, otherwise, would render the atherosclerotic plaque vulnerable to rupture and would cause clinical complications. Ca2+ plays a role in macrophage migration, survival, and foam cell generation. Importantly, in efferocytic macrophages, Ca2+ induces actin polymerization, thereby promoting the formation of a phagocytic cup necessary for efferocytosis. Moreover, in the efferocytic macrophages, Ca2+ enhances the secretion of anti-inflammatory cytokines. Various Ca2+ antagonists have been seminal for the demonstration of the role of Ca2+ in the multiple steps of efferocytosis by macrophages. Moreover, in vitro and in vivo experiments and clinical investigations have revealed the capability of Ca2+ antagonists in attenuating the development of atherosclerotic plaques by interfering with the deposition of lipids in macrophages and by reducing plaque calcification. However, the regulation of cellular Ca2+ fluxes in the processes of efferocytic clearance of apoptotic foam cells and in the extracellular calcification in atherosclerosis remains unknown. Here, we attempted to unravel the molecular links between Ca2+ and efferocytosis in atherosclerosis and to evaluate cellular Ca2+ fluxes as potential treatment targets in atherosclerotic cardiovascular diseases.
CITATION STYLE
Tajbakhsh, A., Kovanen, P. T., Rezaee, M., Banach, M., & Sahebkar, A. (2019, December 1). Ca2+ flux: Searching for a role in efferocytosis of apoptotic cells in atherosclerosis. Journal of Clinical Medicine. MDPI. https://doi.org/10.3390/jcm8122047
Mendeley helps you to discover research relevant for your work.