This paper presents a discrete time-space network model for a dynamic resource allocation problem following an epidemic outbreak in a region. It couples a forecasting mechanism for dynamic demand of medical resource based on an epidemic diffusion model and a multistage programming model for optimal allocation and transport of such resource. At each stage, the linear programming solves for a cost minimizing resource allocation solution subject to a time-varying demand that is forecasted by a recursion model. The rationale that the medical resource allocated in early periods will take effect in subduing the spread of epidemic and thus impact the demand in later periods has been incorporated in such recursion model. A custom genetic algorithm is adopted to solve the proposed model, and a numerical example is presented for sensitivity analysis of the parameters. We compare the proposed medical resource allocation mode with two traditional operation modes in practice and find that our model is superior to any of them in less waste of resource and less logistic cost. The results may provide some practical guidelines for a decision-maker who is in charge of medical resource allocation in an epidemics control effort.
CITATION STYLE
Liu, M., & Xiao, Y. (2015). Optimal scheduling of logistical support for medical resource with demand information updating. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/765098
Mendeley helps you to discover research relevant for your work.