The primary purpose of this research is to assess the long-range energy demand assump-tion made in relevant Roadmaps for the transformation to a low-carbon energy system. A novel interdisciplinary approach is then implemented: a new model is estimated for the aggregated world primary energy demand with long historical time series for world energy, income, and population for the years 1900–2017. The model is used to forecast energy demand in 2050 and assess the uncertainty-derived risk based on the variances of the series and parameters analysed. The results show that large efficiency savings—up to 50% in some cases and never observed before—are assumed in the main Roadmaps. This discrepancy becomes significantly higher when even moderate uncertainty assumptions are taken into account. A discussion on possible future sources of breaks in current patterns of energy supply and demand is also presented, leading to a new conclusion requiring an active political stance to accelerate efficiency savings and lifestyle changes that reduce energy demand, even if energy consumption may be reduced significantly. This will likely include replacing the income-growth paradigm with other criteria based on prosperity or related measures.
CITATION STYLE
Mauleón, I. (2021). Aggregated world energy demand projections: Statistical assessment. Energies, 14(15). https://doi.org/10.3390/en14154657
Mendeley helps you to discover research relevant for your work.