Vascular permeability and neovascularization are implicated in many diseases including retinopathies and diabetic wound healing. Robo4 is an endothelial-specific transmembrane receptor that stabilizes the vasculature, as shown in Robo4-/- mice that develop hyperpermeability, but how Robo4 signals remained unclear. Here we show that Robo4 deletion enhances permeability and revascularization in oxygen-induced retinopathy (OIR) and accelerates cutaneous wound healing. To determine Robo4 signalling pathways, we generated transgenic mice expressing a truncated Robo4 lacking the cytoplasmic domain (Robo4Î "CD). Robo4δCD expression is sufficient to prevent permeability, and inhibits OIR revascularization and wound healing in Robo4-/- mice. Mechanistically, Robo4 does not affect Slit2 signalling, but Robo4 and Robo4Î "CD counteract Vegfr2-Y949 (Y951 in human VEGFR2) phosphorylation by signalling through the endothelial UNC5B receptor. We conclude that Robo4 inhibits angiogenesis and vessel permeability independently of its cytoplasmic domain, while activating VEGFR2-Y951 via ROBO4 inhibition might accelerate tissue revascularization in retinopathy of prematurity and in diabetic patients.
CITATION STYLE
Zhang, F., Prahst, C., Mathivet, T., Pibouin-Fragner, L., Zhang, J., Genet, G., … Eichmann, A. (2016). The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization. Nature Communications, 7. https://doi.org/10.1038/ncomms13517
Mendeley helps you to discover research relevant for your work.