Age-associated chronic basal inflammation compromises muscle mass and adaptability, but exercise training may exert an anti-inflammatory effect. This investigation assessed basal and exercise-induced inflammation in three cohorts of men: young exercisers [YE; n = 10 men; 25 ± 1 yr; maximal oxygen consumption (V̇o2max), 53 ± 3 mL·kg-1·min-1; quadriceps area, 78 ± 3 cm2; means ± SE], old healthy nonexercisers (OH; n = 10; 75 ± 1 yr; V̇o2max, 22 ± 1 mL·kg-1·min-1; quadriceps area, 56 ± 3 cm2), and lifelong exercisers with an aerobic training history of 53 ± 1 yr (LLE; n = 21; 74 ± 1 yr; V̇o2max, 34 ± 1 mL·kg-1·min-1; quadriceps area, 67 ± 2 cm2). Resting serum IL-6, TNF-α, C-reactive protein, and IGF-1 levels were measured. Vastus lateralis muscle biopsies were obtained at rest (basal) and 4 h after an acute exercise challenge (3 × 10 repetitions, 70% 1-repetition maximum) to assess gene expression of cytokines [IL-6, TNF-α, IL-1β, IL-10, IL-4, interleukin-1 receptor antagonist (IL-1Ra), and transforming growth factor-β (TGF-β)], chemokines [IL-8 and monocyte chemoattractant protein-1 (MCP-1)], cyclooxygenase enzymes [cyclooxygenase-1 and -2 (COX-1 and COX-2, respectively), prostaglandin E2 synthases [microsomal prostaglandin E synthase 1 (mPGES-1) and cytosolic prostaglandin E2 synthase (cPGES)] and receptors [prostaglandin E2 receptor EP3 and EP4 subtypes (EP3 and EP4, respectively), and macrophage markers [cluster of differentiation 16b (CD16b) and CD163], as well as basal macrophage abundance (CD68+ cells). Aging led to higher (P ≤ 0.05) circulating IL-6 and skeletal muscle COX-1, mPGES-1, and CD163 expression. However, LLE had significantly lower serum IL-6 levels (P ≤ 0.05 vs. OH) and a predominantly anti-inflammatory muscle profile [higher IL-10 (P ≤ 0.05 vs. YE), TNF-α, TGF-β, and EP4 levels (P ≤ 0.05 vs. OH)]. In OH only, acute exercise increased expression of proinflammatory factors TNF-α, TGF-β, and IL-8 (P ≤ 0.05). LLE had postexercise gene expression similar to YE, except lower IL-10 (P ≤ 0.10), mPGES-1, and EP3 expression (P ≤ 0.05). Thus, although aging led to a proinflammatory profile within blood and muscle, lifelong exercise partially prevented this and generally preserved the acute inflammatory response to exercise seen in young exercising men. Lifelong exercise may positively impact muscle health throughout aging by promoting anti-inflammation in skeletal muscle.NEW & NOTEWORTHY This study assessed a unique population of lifelong aerobic exercising men and demonstrated that their activity status exerts an anti-inflammatory effect in skeletal muscle and circulation. Furthermore, we provide evidence that the inflammatory response to acute exercise is dysregulated by aging but preserved with lifelong exercise, which might improve skeletal muscle resilience to unaccustomed loading and adaptability into late life.
CITATION STYLE
Lavin, K. M., Perkins, R. K., Jemiolo, B., Raue, U., Trappe, S. W., & Trappe, T. A. (2020). Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. Journal of Applied Physiology (Bethesda, Md. : 1985), 128(1), 87–99. https://doi.org/10.1152/japplphysiol.00495.2019
Mendeley helps you to discover research relevant for your work.