Characterization of induced neural progenitors from skin fibroblasts by a novel combination of defined factors

14Citations
Citations of this article
85Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recent reports have demonstrated that somatic cells can be directly converted to other differentiated cell types through ectopic expression of sets of transcription factors, directly avoiding the transition through a pluripotent state. Our previous experiments generated induced neural progenitor-like cells (iNPCs) by a novel combination of five transcription factors (Sox2, Brn2, TLX, Bmi1 and c-Myc). Here we demonstrated that the iNPCs not only possess NPC-specific marker genes, but also have qualities of primary brain-derived NPCs (WT-NPCs), including tripotent differentiation potential, mature neuron differentiation capability and synapse formation. Importantly, the mature neurons derived from iNPCs exhibit significant physiological properties, such as potassium channel activity and generation of action potential-like spikes. These results suggest that directly reprogrammed iNPCs closely resemble WT-NPCs, which may suggest an alternative strategy to overcome the restricted proliferative and lineage potential of induced neurons (iNCs) and broaden applications of cell therapy in the treatment of neurodegenerative disorders.

Cite

CITATION STYLE

APA

Tian, C., Liu, Q., Ma, K., Wang, Y., Chen, Q., Ambroz, R., … Zheng, J. C. (2013). Characterization of induced neural progenitors from skin fibroblasts by a novel combination of defined factors. Scientific Reports, 3. https://doi.org/10.1038/srep01345

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free