A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus

78Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

Abstract

Cytoplasmic polyadenylation element binding protein 1 (CPEB-1) resides at postsynaptic sites in hippocampal neurons in which it controls polyadenylation-induced translation. CPEB-1 knock-out (KO) mice display defects in some forms of synaptic plasticity and hippocampal-dependent memories. To identify CPEB-1-regulated mRNAs, we used proteomics to compare polypeptides in wild-type (WT) and CPEB-1 KO hippocampus. Growth hormone (GH) was reduced in the KO hippocampus, as were the GH signaling molecules phospho-JAK2 and phospho-STAT3. GH mRNA and pre-mRNA were reduced in the KO hippocampus, suggesting that CPEB-1 controls GH transcription. The transcription factor c-Jun, which binds the GH promoter, was also reduced in the KO hippocampus, as was its ability to coimmunoprecipitate chromatin containing the GH promoter. CPEB-1 binds c-Jun 3′ untranslated region CPEs in vitro and coimmunoprecipitates c-Jun RNA in vivo. GH induces long-term potentiation (LTP) when applied to hippocampal slices from WT and CPEB-1 KO mice, but the magnitude of LTP induced by GH in KO mice is reduced. Pretreatment with GH did not reverse the LTP deficit observed in KO mice after theta-burst stimulation (TBS). Cordycepin, an inhibitor of polyadenylation, disrupted LTP induced by either GH application or TBS. Finally, GH application to hippocampal slices induced JAK2 phosphorylation in WT but not KO animals. These results indicate that CPEB-1 control of c-Jun mRNA translation regulates GH gene expression and resulting downstream signaling events (e.g., synaptic plasticity) in the mouse hippocampus. Copyright © 2008 Society for Neuroscience.

Cite

CITATION STYLE

APA

Zearfoss, N. R., Alarcon, J. M., Trifilieff, P., Kandel, E., & Richter, J. D. (2008). A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. Journal of Neuroscience, 28(34), 8502–8509. https://doi.org/10.1523/JNEUROSCI.1756-08.2008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free