Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey

4Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This artice is free to access.

Abstract

Background: Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH.Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey. Results: The results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ2 = 5.042, dF = 1, p < 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p < 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p < 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females. Conclusions: We conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner. © 2013 Chung-Davidson et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Chung-Davidson, Y. W., Wang, H., Siefkes, M. J., Bryan, M. B., Wu, H., Johnson, N. S., & Li, W. (2013). Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey. BMC Neuroscience, 14. https://doi.org/10.1186/1471-2202-14-11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free