Identifikasi Tingkat Kesegaran Ikan Tuna Menggunakan Metode GLCM dan KNN

  • Lamasigi Z
  • - S
  • - H
  • et al.
N/ACitations
Citations of this article
61Readers
Mendeley users who have this article in their library.

Abstract

Abstrak-Dari potensi perikanan dan kelautan secara Nasional, Provinsi Gorontalo memiliki  potensi perikanan dan kelautan cukup besar yang dapat dikelola  untuk  menunjang pembangunan Gorontalo. Potensi perikanan tangkap Provinsi Gorontalo tidak bisa dipisahkan dari potensi perikanan tangkap yang  berbasis  pada  WPP  (Wilayah Pengelolaan  dan Pemanfaatan)  dan diakui  secara Nasional maupun Internasional. Provinsi Gorontalo merupakan salah satu provinsi penghasil ikan tuna di Indonesia, hasil tangkapan ikan tuna di gorontalo telah diekspor keberbagai negara. Tuna merupakan salah satu komoditi andalan perikanan di Gorontalo yang juga banyak melibatkan nelayan kecil. Penelitianini bertujuan untuk melakukan identifikasi tingkat kesegaran ikan tuna dengan menggukanan metode Gray LevelCo-Occurrence Matrix(GLCM)sebagai metode ektraksi fitur dan K-Nearest Neighbour (K-NN) digunakan sebagai metode klasifikasi. Padapenelitian ini, akan dilakukan 5 kali percobaan berdasarkan sudut 0°, 45°, 90°, 135° dan 180° pada nilai k=1, 3, 5, dan 7. Sementara itu, untuk menghitung tingkat akurasi dari klasifikasi K-NN akan menggunakan confusion matrix. Dari uji coba yang di lakukan dengan menggunakan jumlah data training sebanyak 130 citra dan data testing 45 citra pada semua kelas dan sudut mendapatkan hasil akurasi tertinggi pada sudut 0° dengan nilai k=1 yaitu sebesar 82,28% dan yang paling rendah ada pada sudut 135° dan 180° dengan nilai k=1 yaitu sebesar 53,71%. Berdasarkan hasil akurasi yang didapatkan menunjukkan bahwah GLCM bekerja dengan baik untuk meningkatkan hasil akurasi klasifikasi K-NN yang dibuktikan dengan hasil rata-rata akurasi yang diperoleh mencapai 50%.Abstract-From the national fisheries and marine potential, Gorontalo Province has a large enough fishery and marine potential that can be managed to support the development of Gorontalo. The capture fisheries potential of Gorontalo Province cannot be separated from the potential of capture fisheries based on the WPP (Management and Utilization Area) and is recognized both nationally and internationally. Gorontalo province is one of the tuna-producing provinces in Indonesia, tuna catches in Gorontalo have been exported to various countries. Tuna is one of the mainstay fisheries commodities in Gorontalo which also involves many small fishermen. This study aims to identify the freshness level of tuna by using the Gray Level Co-Occurrence Matrix (GLCM) method as a feature extraction method and K-Nearest Neighbor (K-NN) is a classification method. In this experiment, 5 experiments were conducted based on the angles of 0°, 45°, 90°, 135° and 180° at the values of k=1, 3, 5, and 7. Meanwhile, to calculate the accuracy level of the K-NN classification, we will use a confusion matrix. From the trials carried out using the amount of training data as many as 130 images and testing data 45 images against all classes based on angles 0°, 45°, 90°, 135°, and 180° at the values of k=1, 3, 5, and 7, the highest accuracy obtained is at an angle of 0° with a value of k=1 which is 82.28% and the lowest is at an angle of 135° and 180° with a value of k=1 which is 53.71%. The results of the trials conducted show that GLCM works well to improve the accuracy of the K-NN classification as evidenced by the average accuracy of 50%.

Cite

CITATION STYLE

APA

Lamasigi, Z. Y., -, S., -, H., & Lasena, Y. (2022). Identifikasi Tingkat Kesegaran Ikan Tuna Menggunakan Metode GLCM dan KNN. Jambura Journal of Electrical and Electronics Engineering, 4(1), 70–76. https://doi.org/10.37905/jjeee.v4i1.12045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free