A supervised approach to predict the hierarchical structure of conversation threads for comments

11Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

User-generated texts such as comments in social media are rich sources of information. In general, the reply structure of comments is not publicly accessible on the web. Websites present comments as a list in chronological order. This way, some information is lost. A solution for this problem is to reconstruct the thread structure (RTS) automatically. RTS predicts a semantic tree for the reply structure, useful for understanding users' behaviours and facilitating follow of the actual conversation streams. This paper works on RTS task in blogs, online news agencies, and news websites. These types of websites cover various types of articles reflecting the real-world events. People with different views participate in arguments by writing comments. Comments express opinions, sentiments, or ideas about articles. The reply structure of threads in these types of websites is basically different from threads in the forums, chats, and emails. To perform RTS, we define a set of textual and nontextual features. Then, we use supervised learning to combine these features. The proposed method is evaluated on five different datasets. The accuracy of the proposed method is compared with baselines. The results reveal higher accuracy for our method in comparison with baselines in all datasets. © 2014 A. Balali et al.

Cite

CITATION STYLE

APA

Balali, A., Faili, H., & Asadpour, M. (2014). A supervised approach to predict the hierarchical structure of conversation threads for comments. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/479746

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free