IgE-mediated mast cell degranulation and release of vasoactive mediators induced by allergens elicits allergic responses. Although G protein-coupled receptor (GPCR)-induced signals may amplify IgE-dependent degranulation, how GPCR signaling in mast cells is regulated remains incompletely defined. We investigated the role of regulator of G protein signaling (RGS) proteins in the modulation of these pathways in human mast cells. Several RGS proteins were expressed in mast cells including RGS13, which we previously showed inhibited IgE-mediated mast cell degranulation and anaphylaxis in mice. To characterize how RGS13 affects GPCR-mediated functions of human mast cells, we analyzed human mast cell lines (HMC-1 and LAD2) depleted of RGS13 by specific small interfering RNA or short hairpin RNA and HMC-1 cells overexpressing RGS13. Transient RGS13 knockdown in LAD2 cells lead to increased degranulation to sphingosine-1-phosphate but not to IgE-Ag or C3a. Relative to control cells, HMC-1 cells stably expressing RGS13-targeted short hairpin RNA had greater Ca2+ mobilization in response to several natural GPCR ligands such as adenosine, C5a, sphingosine-1-phosphate, and CXCL12 than wild-type cells. Akt phosphorylation, chemotaxis, and cytokine (IL-8) secretion induced by CXCL12 were also greater in short hairpin RGS13-HMC-1 cells compared with control. RGS13 overexpression inhibited CXCL12-evoked Ca2+ mobilization, Akt phosphorylation and chemotaxis. These results suggest that RGS13 restricts certain GPCR-mediated biological responses of human mast cells.
CITATION STYLE
Bansal, G., DiVietro, J. A., Kuehn, H. S., Rao, S., Nocka, K. H., Gilfillan, A. M., & Druey, K. M. (2008). RGS13 Controls G Protein-Coupled Receptor-Evoked Responses of Human Mast Cells. The Journal of Immunology, 181(11), 7882–7890. https://doi.org/10.4049/jimmunol.181.11.7882
Mendeley helps you to discover research relevant for your work.