Intramembrane proteolysis by γ-secretase

188Citations
Citations of this article
156Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

γ-Secretase mediates the final proteolytic cleavage, which liberates amyloid β-peptide (Aβ), the major component of senile plaques in the brains of Alzheimer disease patients. Therefore, γ-secretase is a prime target for Aβ-lowering therapeutic strategies. γ-Secretase is a protein complex composed of four different subunits, presenilin (PS), APH-1, nicastrin, and PEN-2, which are most likely present in a 1:1:1:1 stoichiometry. PS harbors the catalytically active site, which is critically required for the aspartyl protease activity of γ-secretase. Moreover, numerous familial Alzheimer disease-associated mutations within the PSs increase the production of the aggregation-prone and neurotoxic 42-amino acid Aβ. Nicastrin may serve as a substrate receptor, although this has recently been challenged. PEN-2 is required to stabilize PS within the γ-secretase complex. No particular function has so far been assigned to APH-1. The four components are sufficient and required for γ-secretase activity. At least six different γ-secretase complexes exist that are composed of different variants of PS and APH-1. All γ-secretase complexes can exert pathological Aβ production. Assembly of the γ-secretase complex occurs within the endoplasmic reticulum, and only fully assembled and functional γ-secretase complexes are transported to the plasma membrane. Structural analysis by electron microscopy and chemical cross-linking reveals a water-containing cavity, which allows intramembrane proteolysis. Specific and highly sensitive γ-secretase inhibitors have been developed; however, they interfere with the physiological function of γ-secretase in Notch signaling and thus cause rather significant side effects in human trials. Modulators of γ-secretase, which selectively affect the production of the pathological 42-amino acid Aβ, do not inhibit Notch signaling. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.

Cite

CITATION STYLE

APA

Steiner, H., Fluhrer, R., & Haass, C. (2008, October 31). Intramembrane proteolysis by γ-secretase. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.R800010200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free