The BEM for numerical solution of partial fractional differential equations

29Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

A numerical method is presented for the solution of partial fractional differential equations (FDEs) arising in engineering applications and in general in mathematical physics. The solution procedure applies to both linear and nonlinear problems described by evolution type equations involving fractional time derivatives in bounded domains of arbitrary shape. The method is based on the concept of the analog equation, which in conjunction with the boundary element method (BEM) enables the spatial discretization and converts a partial FDE into a system of coupled ordinary multi-term FDEs. Then this system is solved using the numerical method for the solution of such equations developed recently by Katsikadelis. The method is illustrated by solving second order partial FDEs and its efficiency and accuracy is validated. © 2011 Elsevier Ltd. All rights reserved.

Cite

CITATION STYLE

APA

Katsikadelis, J. T. (2011). The BEM for numerical solution of partial fractional differential equations. Computers and Mathematics with Applications, 62(3), 891–901. https://doi.org/10.1016/j.camwa.2011.04.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free