UPLC-ESI-QTOF-MS Profiling of Phenolic Compounds from Eriocephalus africanus: In Vitro Antioxidant, Antidiabetic, and Anti-Inflammatory Potentials

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The present study investigated phenolic compounds, antioxidant, antidiabetic, and the anti-inflammatory potentials of methanolic and chloroform extracts of Eriocephalus africanus. The methanolic extract included, polyphenols (112 ± 2.81 mg gallic acid equivalent (GAE)/g), flavonols (76.12 ± 7.95 mg quercetin equivalents (QE)/g); antioxidant capacity (Ferric Reducing Antioxidant Power (FRAP) (752.64 ± 89.0 μmol of ascorbic acid equivalents (AAE) per g dry weight (µmol AAE/g), 2,2-dyphenyl-1-picrylhydrazyl (DPPH) (812.18 ± 51.12 Trolox equivalents per gram of dry mass of plant extracts (μmol TE/g), TEAC (631.63 ± 17.42 µmol TE/g)), while the chloroform extract included polyphenols (39.93 ± 1.36 mg GAE/g), flavonols (44.81 ± 3.74 mg QE/g); antioxidant capacity, DPPH (58.70 ± 5.18 µmol TE/g), TEAC (118.63 ± 3.74 µmol TE/g) and FRAP (107.10 ± 2.41 µmol AAE/g). The phytochemicals profiling performed by UPLC-ESI-QTOF-MS revealed some important polyphenols, predominantly flavonoids, that could be responsible for the antioxidant capacity and biological effects. Both extracts demonstrated a dose-dependent manner of the alpha-glucosidase inhibition with an IC50 between 125 and 250 μg/mL for methanolic extract, while the chloroform extract was at 250 μg/mL. In the L6 myoblasts and C3A hepatocytes, the methanolic extract slightly increased the utilization of glucose, and both extracts exhibited a dose-dependent increase in the glucose uptake in both cell types without significantly increasing the cytotoxicity. Furthermore, both extracts exhibited an anti-inflammatory potential and the findings from the present study could serve as a baseline for further research in the development of pharmaceutical agents.

Cite

CITATION STYLE

APA

Okaiyeto, K., Kerebba, N., & Oguntibeju, O. O. (2022). UPLC-ESI-QTOF-MS Profiling of Phenolic Compounds from Eriocephalus africanus: In Vitro Antioxidant, Antidiabetic, and Anti-Inflammatory Potentials. Molecules, 27(24). https://doi.org/10.3390/molecules27248912

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free