Endoplasmic reticulum stress-mediated apoptosis may play an important role in the destruction of pancreatic β-cells, thus contributing to the development of type 1 and type 2 diabetes. One of the regulators of endoplasmic reticulum stress-mediated cell death is the CCAAT/enhancer binding protein (C/EBP) homologous protein (Chop). We presently studied the molecular regulation of Chop expression in insulin-producing cells (INS-1E) in response to three pro-apoptotic and endoplasmic reticulum stress-inducing agents, namely the cytokines interleukin-1β+interferon-γ, the free fatty acid palmitate, and the sarcoendoplasmic reticulum pump Ca2+ ATPase blocker cyclopiazonic acid (CPA). Detailed mutagenesis studies of the Chop promoter showed differential regulation of Chop transcription by CPA, cytokines, and palmitate. Whereas palmitate- and cytokine-induced Chop expression was mediated via a C/EBP-activating transcription factor (ATF) composite and AP-1 binding sites, CPA induction required the C/EBP-ATF site and the endoplasmic reticulum stress response element. Cytokines, palmitate, and CPA induced eIF2α phosphorylation in INS-1E cells leading to activation of the transcription factor ATF4. Chop transcription in response to cytokines and palmitate depends on the binding of ATF4 and AP-1 to the Chop promoter, but distinct AP-1 dimers were formed by cytokines and palmitate. These results suggest a differential response of β-cells to diverse endoplasmic reticulum stress inducers, leading to a differential regulation of Chop transcription. © 2007 by the American Diabetes Association.
CITATION STYLE
Pirot, P., Ortis, F., Cnop, M., Ma, Y., Hendershot, L. M., Eizirik, D. L., & Cardozo, A. K. (2007). Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells. Diabetes, 56(4), 1069–1077. https://doi.org/10.2337/db06-1253
Mendeley helps you to discover research relevant for your work.