Differentiation and survival of neuronal cell types requires the action of neurotrophic polypeptides such as nerve growth factor (NGF). In the central and peripheral nervous system and the phaeochromocytoma cell model PC12, NGF exerts its effects through the activation of the signalling capacity of Trk, a receptor tyrosine kinase (RTK) which upon interaction with NGF becomes phosphorylated on tyrosines and thereby acquires the potential to interact with signal-transducing proteins such as phospholipase C-(γ) (PLC(γ)), phosphatidylinositol-3'-kinase (PI3'-K) and SHC. Mutagenesis of the specific binding sites for these src homology 2 (SH2) domain-containing substrates within the Trk cytoplasmic domain suggests a non-essential function of PI3'-K and reveals a major role for the signal controlled by the SHC binding site at tyrosine 490 and a co-operative function of the PLC(γ)-mediated pathway for neuronal differentiation of PC12 cells.
CITATION STYLE
Obermeier, A., Bradshaw, R. A., Seedorf, K., Choidas, A., Schlessinger, J., & Ullrich, A. (1994). Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. The EMBO Journal, 13(7), 1585–1590. https://doi.org/10.1002/j.1460-2075.1994.tb06421.x
Mendeley helps you to discover research relevant for your work.